INVESTIGATION ON TEMPERATURE DISTRIBUTION AT THE TOOL-CHIP INTERFACE UNDER VARIABLE HEAT TRANSFER CONDITIONS

Wit Grzesik, Marian Bartoszuk

SUMMARY
This paper analyzes quantitatively heat transfer problem in the cutting tool in a steady-state orthogonal cutting when using uncoated carbide tools and the X5CrNi18-9 stainless steel as a work material. Finite Difference Approach (FDA) is applied to predict the changes of temperature distribution, and both average and maximum temperatures at the tool-chip interface, resulting from different the heat flux configuration. Moreover, some realistic computing errors due to possible measuring variations of the tool-chip contact length and the intensity of heat source were considered in simulations. Basically, uniformly distributed plane, symmetrical and asymmetrical triangular, and symmetrical and asymmetrical trapezoid-type heat flux configurations were accounted for. It was found that the assumption of an asymmetrical trapezoidal shape of heat flux configuration provides the simulated results closer to the experimental data.

Keywords: orthogonal cutting, temperature distribution, FDA

1. Introduction
For the past fifty years metal cutting researchers have developed many modelling techniques including analytical techniques, slip-line solutions,
empirical approaches and simulation techniques. Although the finite element
method (FEM) has particularly become the main tool for simulating metal
cutting processes, the finite different approach (FDA) and boundary element
method (BEM) have also occasionally been applied to study the forward thermal
problems in machining [1, 2, 3, 4].

Smith and Armarego [5] first predicted temperature in orthogonal cutting
with the finite difference approach (FDA), based on the classical thin shear zone
model and a cylindrical polar coordinate system of mesh for the tool. Lazoglu
and Altintas [6] have applied the FDA method for the predictions of steady-state
tool and chip temperature fields in continuous machining and transient
temperature variation in interrupted cutting (milling) of different materials such
as steels and aluminum alloys. Recently, Grzesik et al. [3, 7] have developed
a special variant of the finite difference method, called the method of elementary
balances (MBE), in which difference equations are defined based on balances of
energy produced for all discrete elements of the model. As a result, the tool
temperature fields in continuous (orthogonal) machining of X5CrNi18-9 steel
with uncoated and coated carbide tools were predicted. These predictions
provide a detailed view of the changes in the 2D-thermal field inside the tool
body as a function of cutting speed for the defined friction conditions and values
of the heat partition coefficient. Special attention was paid to temperature
distribution curves at the tool-chip and work-flank interfaces. Moreover, some
possible sources of computed errors, as for example the number of iterations,
magnitude of the heat flux, and distribution of the temperature along the contact
length were accounted for. It is concluded that the assumption of a classical heat
transfer model with a uniform distribution of the heat flux can be a substantial
barrier in providing realistic process data [7].

In general, in the simulations of mechanical and thermal aspects of the
cutting process, the problem of measuring and computing inaccuracies related to
both input data or process variables is either neglected or taken into
consideration fragmentarily. On the other hand, some estimations revealed [8, 9]
that providing wrong data to the simulation program can result in substantial
under- or overestimation of the predicted process quantities. For example,
Ostafiev et al. [9] obtained quite different temperature fields when changing heat
transfer conditions, especially the heat flux transfer peculiarity in the cutting
tool. The other sources of discrepancies between calculated and measured values
of tool temperatures can lay in the heat flux reflection from the cutting tool tip
surfaces, temperature dependence of the thermal properties of tool material and
workpiece temperature rise. Surprisingly, it was proven that the heat flux
distribution iterated only small changes in the temperature field. In contrast, it is
suggested [10] that the shape of heat source influences the location of the
maximum interface temperature, but it remains the same value. Moreover, the
assumption of both triangular and trapezoid-type heat distribution on the rake
face results in better agreement of analytically predicted values with those obtained numerically, using FEM, by Tay [1]. In Ref. [7] a finite difference model was developed to map the temperature distribution along the interface and inside the selected coating/substrate area and to compute the average interface temperature. The FDA simulations confirmed a distinct influence of coatings on the interface temperatures and their distributions due to visible changes in the heat partition coefficient and the contact length.

This paper provides unique isothermal maps for temperature distribution in a P20 carbide tool when machining an X5CrNi18-9 stainless steel at different cutting speeds ranging from 120 to 160 m/min. Several possible sources of errors and discrepancies between the measurements and the results of numerical computations are discussed. It was achieved by the input of given variations in the heat flux intensity and the tool-chip contact length to the FDA program for four different shapes of heat source. In order to verify the modelling results the average interface temperature was also assessed experimentally using the classical tool-workpiece thermocouple technique. It can be concluded that the FDA-based modelling of the tool-chip interface temperature distribution is a very robust computing method and allows to establish the variations of heat transfer along the interface.

2. Simulation procedure

2.1. Process conditions

Characteristic features of the process: dry, orthogonal.
Cutting tool material: uncoated ISO P20 carbide grade.
Work material: stainless steel (X5CrNi18-9).
The following machining conditions were kept in these computations:
• cutting speeds = 120, 140 and 160 m/min;
• feed rate = 0.16 mm/rev;
• depth of cut = 2 mm;
• cutting edge is ideally sharp.

2.2. Experimental data

a) Contact length obtained experimentally using computerized image processing.
b) Thermal conductivity (λ_w) and corresponding thermal diffusivity (α_w) as function as temperature (t):

$$\lambda_w = 5.744E - 006t^2 + 0.018t + 33.339$$ \hspace{1cm} (1)
\[\alpha_W = \frac{\lambda}{c_p \rho} \]

(2)

where: \(c_p \) is the specific heat and \(\rho \) is the density of sintered carbide grade used.

Calculated values of \(\lambda_W \) are equal to 47.11, 47.25 and 47.43 W/(mK) for the selected cutting speeds. Corresponding values of \(\alpha_W \) are equal to \(2.75 \times 10^{-5} \), \(2.77 \times 10^{-5} \) and \(2.79 \times 10^{-5} \) m\(^2\)/s.

c) Calculation of the heat amount (cutting energy) generated at the tool-chip interface:

\[Q_c = F_y v_{ch} \]

(3)

where: \(F_y \) is friction force, \(v_{ch} \) is chip velocity.

d) Calculation of the heat partition coefficient based on the algorithm proposed by Reznikov (\(R_{ch} \)) [7]:

\[R_{ch} = 1/(1 + 1.5 \lambda_T / \lambda_W \sqrt{\alpha_W / \alpha_T}) \]

(4)

where: \(\lambda, \alpha \) – the thermal conductivity and diffusivity for work (\(W \)) and tool (\(T \)) materials, respectively.

e) Four different shapes of heat source (Fig.1) were selected, keeping the same area of three geometrical figures, i.e. rectangle, triangle and trapezoid.

2.3. Simulation algorithm

In this study a special variant of the FDM, called the method of elementary balances (MBE), in which difference equations are defined based on balances of energy for all discrete elements of the model was applied [3]. This method uses only the Fourier’s law and typical calculation mesh available in Microsoft Excel program. In particular, each cell within the calculation sheet is assigned to one discrete element of the analytical model considered. As a result, the model is built as a set of cells including adequate formulae and values, which finally represents both geometrical and physical features of the modeled process. Formulae are introduced according to the explicit method of the difference procedure. Moreover, the process conditions for zero intrinsic heat source \(\dot{q}_i = 0 \) and a steady two-dimensional heat flow problem were assumed.

Therefore, the partial differential equation for the heat conduction rates in two orthogonal directions \(x \) and \(y \), expressed by Fourier’s heat conduction law, can be transformed to the following finite difference form [3]:
The difference equation (5) can be solved numerically using eight specific, linear and corner, boundary conditions described in [3]. On average, FDA-based temperature simulations involve \((2.2-2.5) \times 10^4\) iterations.

3. Simulation Results

3.1. Temperature fields inside the tool

The influence of the heat source shape on the distribution of isotherms within the monolithic carbide tool is illustrated in Figures 2-4.

<table>
<thead>
<tr>
<th>Heat source shape</th>
<th>Heat source shape</th>
<th>Heat source shape</th>
<th>Heat source shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version I</td>
<td>Version II</td>
<td>Version III</td>
<td>Version IV</td>
</tr>
<tr>
<td>Max. value of q</td>
<td>q₁</td>
<td>q₂ = 2q₁</td>
<td>q₃ = 1.43q₁</td>
</tr>
<tr>
<td></td>
<td>q₂</td>
<td></td>
<td>q₄ = 1.33q₁</td>
</tr>
</tbody>
</table>

Fig. 1. Shapes of heat source used in the FD simulations

As shown in Fig. 2, the maximum temperature is localized approximately in half the contact length and coincides well with classical literature arrangement.
For this case, the average and maximum temperatures computed for the cutting speed of 160 m/min are equal to 860°C and 920°C, respectively.

As can be observed in Figures 3 and 4, the assumption of triangular and trapezoidal heat source distribution causes the isotherm shapes and maximum temperatures to be different from those for uniform heat source from Fig. 2. Whereas, for all three cases considered, for which the average temperatures are practically the same, the maximum values for triangular and trapezoidal (case III) heat sources increase up to 1190°C and 1130°C, respectively.

3.2. Temperature at the rake face

The distribution of tool-chip interface temperature determined for all models of heat source, along with the measured average temperature, are
Investigation on temperature...
3.3. Temperature changes at variable heat transfer conditions

As mentioned in Section 1, the estimation of interface temperatures was extended over the consideration of two basic variables, including the heat source intensity (its width) and its length. This approach results directly from possible distinct measuring inaccuracies of friction force and contact length. Based on long-time experiments in this metal cutting aspects, three levels of variations were assumed, i.e. ±5%, ±10% and ±15%.

In the simulation with variable heat source intensity, the reference values of the heat flux are set at 67.85, 76.62 and 99.10 MW/m² for cutting speed of 120, 140 and 160 m/min, respectively. Appropriate simulations results are shown in Figures 7-10. As shown in Fig. 7 and 8 the simulation results in underestimating the average temperatures in relation to the measurements.

![Fig. 7. Influence of changes of tool-chip contact length on the average temperature for uniform heat source and variable cutting speed](image1)

![Fig. 8. Changes of average interface temperature due to variations in the contact length (uniform heat source and cutting speed \(v_c = 120\) m/min)](image2)
In this case, satisfactory agreement was achieved for enlarged contact length by 15%. When considering only simulation results (Fig. 8), this effect is not so pronounced and is in the range ±4%. On the other hand, the same variations of heat flux (Figs. 9 and 10) generate visible changes in the average interface temperature. As documented in Fig. 9, the increase of the experimentally determined heat flux by 15% shifted the esteemed values of temperature closer to the recorded values. It can be seen in Fig. 9 that this effect was obtained for all three cutting speeds considered.

It may be concluded, based on Figures 8 and 10, that the basic source of the discrepancy between FDA simulations and thermocouple-based measurements lays in an important underestimation of the heat flux.
4. Conclusions

1. The simulation accuracy depends not only on the model formulation, including both initiating and boundary conditions, but primarily on the shape of heat source.
2. Acceptable agreement between computed and measured values of the average interface temperatures was obtained for trapezoidal shape of the heat source, similar to the distribution of contact shear stresses.
3. It was found that the contact length is a secondary important factor in the estimation of proper values of the average interface temperature.
4. One of the main findings is that the discrepancy between simulations and measurements can result from underestimation of the heat flux.

References

Received in May 2008